13.講習活動および実用化活動

13.1 広報部会の活動目的

13.1.1 活動目的と公開レベル

広報部会は、道路管理技術委員会の活動成果を道路管理者に周知させ、その成果の活用を図る という目的から、平成19年9月に部会名を「活動成果実用化部会」から「広報部会」に変更し 発足した。

広報にあたっては、当委員会成果の公開レベルを設定し、当面は、公開レベル1を目標に活動を行うこととしている。

	公開レベル	公 開 対 象 者					
レベル 0 道路管理技術委員会メンバー(委員&専門技術者)							
	レベル1	レベル0+道路管理者関係(本局、建設部、寒地土研)					
	レベル2	レベル 0 + 道路管理者関係 (本局、建設部、寒地土研、北海道、札幌市、NEXCO等)					
	レベル3	レベル2+大学、コンサル(ほぼ一般公開)					

表 1 3 - 1 公開レベル

13.1.2 委員会活動テーマ履歴

平成10年度から各部会でテーマを設定し、これまで23のテーマについて活動してきた。

立7人		本報告書	その1報告書		その2報告書		その3報告書		その4報告書							
部会	テーマ		H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
	道路防災マップの作成と運用	第3章														
	活断層と道路	-														
	急崖斜面斜め空中写真の管理・運用	第4章														
	集中豪雨と都市道路	-														
地盤	雨量と斜面の不安定化	-														
	道路施設の凍上対策・管理手法	-														
	レーザを用いた地形計測技術に関する調査	-														
	岩盤斜面評価精度向上のための調査手法の検討	第5章														
	降雨等と土砂災害の関係	第6章														
火山	火山噴火と道路被害想定	-														
	橋梁データベースの検討	-														
	橋梁点検に関する技術向上	-														
構造	長大橋梁等の耐震性能評価に関する検討	第7章														
伸足	道路構造物工事仕様の変遷	第8章)	Ĭ						
	トンネル維持管理のための調査・検討	-														
	トンネルデータベース	-														
	春志内トンネルの冬期事故対策	-														
	道路雪崩災害の実態と対策	第9章														
道路	吹雪災害の特徴と課題	第10章														
・情報	冬期路面管理データの活用に関する検討	-														
	道路テレメータの活用	第11章														
	道路気象情報の高度化	第12章														
広報	講習活動および実用化活動	第13章														

表13-2 道路管理技術委員会における活動テーマ履歴

活動年 活動予定

13.2 活動講習会

13.2.1 平成19年度活動講習会

(1)講習会概要

道路管理技術委員会の活動概要の周知を図る目的で、初めての取り組みとして活動講習会を平成19年度に開催した。講習対象者は、北海道開発局の各建設部本部および道路事務所に所属する道路維持関係職員(全職員)とし、表13-3の日程で全道6箇所において開催した。

-1013			、//文/IE
開催場所	対象開建	開催日	参加人数
網走市	網走	H19/11/01	2 1
旭川市	旭川・稚内	H19/11/06	3 0
室蘭市	室蘭	H19/11/15	1 6
帯広市	帯広・釧路	H19/11/20	2 8
札幌市	札幌・小樽・留萌	H19/11/22	2 4
函館市	函館	H19/11/27	2 0
合計			1 3 9

表13-3 道路管理技術委員会における活動テーマ履歴

(2)講習会内容

1回の講習会の所要時間は、1時間15分程度とし、各部会でのテーマの概要についてパワーポイントを用いて説明した。

講習プログラムと所要時間は、概ね次のとおりである。

概説5 分
・道路管理技術委員会について(設置経緯、活動目的・趣旨)
地盤部会活動 · · · · · · · · · 20 分
・道路防災マップの作成と運用
・急崖斜面の斜め空中写真の管理と運用
・火山噴火による道路被害範囲の検討
・地上型レーザを用いた地形計測に関する調査・検討
・岩盤斜面評価精度向上のための調査手法の検討
構造部会活動 · · · · · · · · · · · · · · · · · · ·
・長大橋梁等の耐震性能評価に関する検討
・橋梁点検に関する技術向上
・トンネル維持管理のための調査・検討
道路・情報部会活動 ・・・・・・・・・・・・・・・・・・・・・・・・15 分
・冬期路面管理データの活用に関する検討
・北海道の道路雪崩と雪崩管理
広報部会活動 · · · · · · · · · · · · · · · · · · ·
・道路管理技術委員会 HP へのアクセス方法について
ほか質疑等 ・・・・・・10 分

写真13-1 平成19年度活動講習会の実施風景

(3)アンケート結果

講習会参加者に対して、講習内容の「理解のしやすさ」と「現場への活用可能性」に関する簡単なアンケートを行った。

その結果、講習内容の理解のしやすさについては、各講習セクションとも「よく理解できた」が $2 \sim 3$ 割、「ある程度理解できた」が $6 \sim 7$ 割で、合わせると 9 割以上が「理解できた」と回答している。

また、現場への活用可能性については、各講習セクションとも「役立つ内容が多い」が約3割、「一部は役に立つ」が5割強で、合わせると8割以上が「役に立つ」と回答している。

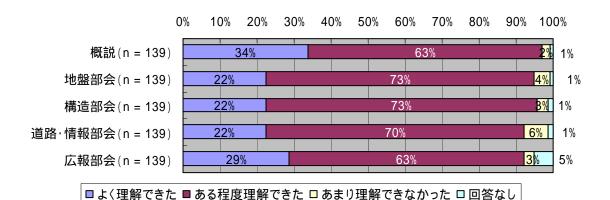


図13-1 講習内容の理解のしやすさ

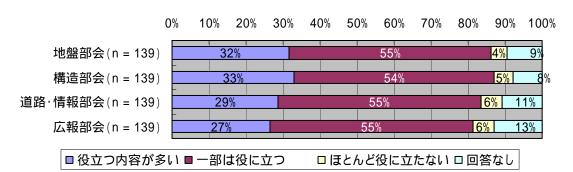


図13-2 講習内容の現場への活用可能性

フリーアンサーの意見・要望としては、各テーマの説明が短かったため、もう少し時間をかけ て説明して欲しいという要望のほか、テーマを絞った内容にしてはどうかという要望もあった。

一方で、現場でどのように活用するべきか解らないという意見もあり、現場への活用方法について今後検討が必要と考えられる。

フリーアンサーでの意見・要望

- もう少し時間をかけて説明して欲しい
- 毎年、講習会を実施して欲しい
- 現場でのホームページ閲覧を早期に実現して欲しい
- テーマを絞った講習会にしてはどうか
- より多くの職員が受講するべき
- PRしづらい内容もあるが活動について広く広報すべき
- ビデオなどを作製し回覧する方法もあるのでは
- 現場でどのように活用するべきか解らない

13.2.2 平成21年度活動講習会

(1)講習会概要

平成19年度に引き続き道路管理技術委員会の活動概要の周知を図る目的で、活動講習会を開催した。講習対象者は、国土交通省北海道開発局の各建設部本部に所属する道路維持関係の専門官・係長クラス約20名とし、平成22年3月3日に札幌市内で開催した。

日 時:平成22年3月3日(水) 14:00~15:05

場 所:北海道開発局 職員研修室(札幌市東区北6条東12丁目)

写真13-2 平成21年度活動講習会の実施風景

(2)講習会内容

今回の講習会では、平成19年度のアンケート結果を踏まえ、時間は前回とほぼ同じ1時間5 分程度としてテーマを絞り込むと共に、現場で活用しやすいテーマを選定した。

講習プログラムと所要時間は、概ね次のとおりである。

委員会活動の概要 · · · · · · · · · · · · · · · · · · ·
地盤部会活動 · · · · · · · · · 20 分
・道路防災マップの作成と運用
・急崖斜面の斜め空中写真の管理と運用
道路・情報部会活動 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 20 分
・道路雪崩災害の実態と対策
ほか質疑等 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

(3)アンケート結果

平成 1 9 年度と同様に行ったアンケート結果では、講習内容の理解のしやすさについては、各講習テーマとも「よく理解できた」が $4 \sim 5$ 割、「ある程度理解できた」が $5 \sim 6$ 割で、合わせるとほぼ全員が「理解できた」と回答している。

また、現場への活用可能性については、各講習セクションとも「役立つ内容が多い」が3~4割、「一部は役に立つ」が5~6割で、合わせると9割が「役に立つ」と回答している。



図13-4 講習内容の現場への活用可能性

また、フリーアンサーでの意見・要望としては、「委員会のホームページを知らなかったので、 今度システムを使ってみたい」、「ホームページをもっと広報した方が良い」などの意見があった。

13.3 委員会ホームページの閲覧環境整備

平成19年度に実施した活動講習会参加者へのアンケートで要望のあった、当委員会ホームページの北海道開発局道路関係職員への公開に向けた環境整備を行った。

札幌開発建設部内に委員会ホームページ用のサーバを平成20年10月に設置し、平成21年 度末現在、北海道開発局内のイントラネットで各職員端末から当委員会ホームページの内容が全 て閲覧可能となっている。

ホームページでは、当委員会の活動成果報告書(PDF版)のほか、「道路防災マップシステム」や「急崖斜面空中写真検索システム」の閲覧が可能となっている。

図13-5 北海道開発局イントラネット初期画面



図13-6 道路管理技術委員会ホームページトップページ

13.4 委員会活動成果公表のルール作り

今後、当委員会の活動成果を公表していく上で、委員や専門技術者が、口頭発表論文や学協会への投稿論文、技術報告等の形で公表物を作成することが考えられるが、現在の『委員会設置要領』等には、公表物の著作権について記載がされていない。

そのため、広報部会で成果公表のルールについて議論を行い、以下のルールを設定した。(平成19年度の広報部会において設定)

道路管理技術委員会での活動成果の公表に関する原則ルール

- 成果の著作権は、他の一般的な著作物と同様、著作者個人(または複数)が 所有する。
- ただし、必要に応じて公表物の冒頭、または末尾に、道路管理技術委員会の 活動に関連した成果、または一部であることなどを記述することとする。

13.5 活動テーマ概要の作成

本委員会での活動について周知を図ることを目的として、これまでの活動テーマに関する概要 資料を作成した。作成対象は、「道路管理技術委員会活動報告書(その3)平成16~18年」に 掲載されている次の10テーマとし、1テーマA4版2頁程度を目安とした。

次頁以降にテーマ別概要を掲載する。

活動テーマ概要集掲載テーマ

- 1. 道路防災マップ
- 2 . 急崖斜面斜め写真管理・運用
- 3. レーザを用いた地形計測技術に関する調査
- 4.岩盤斜面評価精度向上のための調査手法の検討
- 5.火山噴火と道路被害想定
- 6. 橋梁点検に関する技術向上
- 7. 長大橋の耐震性能評価の検討
- 8. トンネル維持管理のための調査・検討
- 9. 道路雪崩災害の実態と対策
- 10. 冬期路面管理データの活用に関する検討

地盤部会(H10~H21)

1. 道路防災マップ

道路防災マップは、GIS(地理情報システム)を利用し、各種の防災関連情報を一元的に収集・整理し、利用者に対して視覚的な"マップ"という形態で提供することを主な目的としたものである。防災マップは、地すべり、液状化、活断層、火山、津波など防災に関する様々な情報を統合し、それらを地図上に重ね合わせて表示させることができる。将来的には、道路の維持管理のみならず、新規道路の計画や建設に際し、道路防災に資する情報を提供することも目標としている。

道路防災マップの作成および運用に関わる活動は、平成10年度に紙ベースでの資料収集・整理から 始まり、様々な道路防災関連情報を導入しつつ、インターネット技術を導入したウェブGISによる各 種情報配信を行う現在のシステムに至っている。

本概要では、以降にこれまでに道路防災マップに導入され、閲覧が可能となっている情報を示すとと もに、今後の検討内容について記述する。

1 道路防災マップに導入した情報

1.1 概要

各種防災関連情報を掲載するにあたり、国土地理院が発行する『数値地図画像(1:200,000 および 1:25,000)』をシステムの基図として採用している。トップページから任意の建設部を選択すると管内図が表示され、確認したい箇所をクリックすることで、詳細な数値地図画像上に表示された各種情報を重ね合わせて閲覧できる。

図1 道路防災マップシステムトップページ

1. 2 掲載情報

- ①地すべり地形
- ②液状化の可能性がある地域
- 3活断層

上記の3情報については、災害要因となりうる 情報として、既往の文献を基に、全道規模で整 備・導入されている。

④火山ハザードマップ

各自治体等により作成されている火山ハザードマップとして、『北海道駒ヶ岳』、『恵山』、『樽 前山』、『有珠山』、『十勝岳』、『雌阿寒岳』、『アト サヌプリ』、『クッタラ』を収録している。

図2 地すべりの表示例

5津波漫水予測

「日本海溝・干島海溝周辺海溝型地震に係る地震防災対策の推進に関する特別措置法」を受け、 北海道により作成が進められている津波浸水予 測範囲を収録している。現段階で、太平洋沿岸地 域(函館〜釧路)が整備済みとなっており、今後 作成が予定されている日本海沿岸・オホーツク海 沿岸地域についても随時追加予定である。

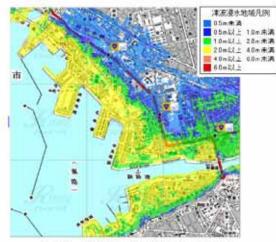


図3 津波浸水予測範囲の表示例

⑥急崖斜面斜め空中写真(連携)

地盤部会の他テーマで整備された「急崖斜面斜め空中写真データベースシステム」と連携し、道 路防災マップの地図上から、該当する範囲で過去 に撮影された空中写真を閲覧することが可能と なっている。

図4 空中写真の表示例 (道路防災マップの地図上から、カメラのアイコン

をクリックすることで、急崖斜面斜め空中写真デー タベースシステムの当該範囲に移動)

7 道路テレメータ関連

道路テレメータのデータを利用する際に留意する点や位置情報、統計値等がまとめられた「道路テレメータ利用ガイド」が、道路防災マップの地図上から閲覧可能となっている(道路・情報部会活動成果)。今後は、全道の道路テレメータの過去データを集約し、一元管理することで、任意のテレメータデータを道路防災マップからダウンロード提供できる機能を追加する予定である。

2 今後の検討内容

2. 1 想定するユーザー

道路防災マップシステムは、その構築の目的か ら、ユーザーとしては、道路防災に関連する者が 対象として想定されている。具体的には、道路管 理者をはじめとして、大学等の研究機関、建設コ ンサルタントのほか、工事関係者, 道路維持業者, 防災関連機関等が挙げられるが、将来的には一般 の道路利用者にまで提供範囲を拡大することも 想定されている。当面は対象とするユーザーを "道路管理者" として検討を進めているところで ある。現在、北海道開発局内に専用サーバを設置 することで、開発局の道路維持に携わる職員も本 システムを閲覧できるようになっており、今後は、 活動講習会等によるアナウンスを行うことで、よ り多くのユーザーに利用してもらい、アンケート 調査等によって現場のニーズを汲み上げ、よりよ いシステムにして行きたいと考えている。

2.2 今後の検討内容

これまで、さまざまな防災関連情報を収集・整理し、道路防災マップに導入を図ってきた。今後 も他部会で検討された成果を含め、道路管理に有 用な情報の整備を推進し、定期的な情報の更新を 行うとともに、それらの活用方法についての検討 を深めていきたい。

■本研究テーマの掲載報告書

道路管理技術委員会活動報告書(その3) (平成16年度~平成18年度)

道路管理技術委員会活動報告書(その4)【未刊】 (平成19年度~平成21年度)

発行:財団法人 北海道道路管理技術センター

地盤部会(H10~H21)

2. 急崖斜面斜め写真管理・運用

落石や崩壊は、しばしば斜面遷覧。線付近の斜面頭部で発生する。このような斜面変状は、道路から距離があり、また植生などの影響もあって、道路上から確認するのは難しい。特に斜面が急崖で長大ある場合には、接近することさえ出来ないことが多く、また垂直の空中写真でも判読は困難である。

このような場合、対象斜面の斜め空中写真を撮影し、経時変化や季節による違いを判読することによって、斜面変状に関する多くの情報を得ることができる。特に、急崖斜面上部を含め対象斜面をより立体的に捉え、評価するのには有効な手段である。

「急崖斜面斜め写真管理・運用」は、このような背景から、地上からあるいは垂直空中写真からでは 判読が困難な急崖斜面に対し、斜め空中写真を収集し、これを経年的に管理・運用して、国道の安全な 通行保持に資することを目的に実施するものである。

1 写真収集・入力

1. 1 撮影・判読ガイドラインの作成

平成 10 年度以降、急崖斜面の斜め空中写真の 撮影方法や判読方法、道路管理への活用例および 写真管理のためのシステムや必要な写真解像度 等、空中写真の管理と運用方法について検討を行った。検討結果は、平成 13 年 6 月発行の道路管 理技術委員会活動報告書(平成 10 年~12 年)に、

「急崖斜面の空中写真撮影と写真管理に関する 検討」(マニュアル) としてとりまとめた。

1.2 写真収集・入力

平成 21 年度末までに、沿線に急崖斜面が多い 路線から優先に、全道 10 開建管内について合計 5,904 枚の斜め空中写真データ入力を完了してい る。表-1は、これまでの収集・入力写真の対象 路線、および枚数である。写真は、各開発建設部 で撮影したものを借用し、前述のマニュアルに基 づき、実体視可能な写真を選定し、スキャナによ り電子化したデータをサーバーに入力・保存した。

表-1	急崖斜面斜め空中写真収集・	入力結果の概要
-----	---------------	---------

入力年度	対象開発建設部	対象国道	入力枚数
平成14年度	小樽	R229号	972枚
平成15年度	帯広	R336号	1,374枚
平成16年度	札幌	R231号	674枚
平成17年度	室蘭	R235·336号	601枚
平成18年度	旭川	R39·40号	677枚
平成19年度	函館	R228 · 229 · 277号	783枚
平成20年度	網走・留萌	R39 · 231 · 333 · 334 · 450号	783枚
平成21年度	釧路・稚内	R40·238·274·334号	40枚
승 計	10開建	13路線	5,904枚

- 通路管理技術委員会 活動テーマ概要:急崖斜面斜め写真管理・運用

2 検索·配信

平成 14 年度からインターネットによるデータ の表示・検索・配信を実施している。

また、本委員会で別途実施している道路防災マップシステムとも連携し、平成 20 年度からは道路防災マップからの配信も開始している。これにより、緊急時のみならず、通常時の点検調査の効率化、調査結果の効率的な検索・表示等に寄与している。

以下に検索の方法について記載する。

1. 地域の選択

2. 区間の表示

3.測点の表示・選択

4.写真の選択

5.拡大による確認 ⇒ダウンロード

このほか、路線名からの検索も選択できるシステムになっており、今後も利便性を向上していくとともに、岩盤斜面専門部会と連携し、より実践的なマニュアルの改訂も実施していく予定である。

■本研究テーマの掲載報告書

道路管理技術委員会活動報告書(その3) (平成16年度~平成18年度) 道路管理技術委員会活動報告書(その4)【未刊】 (平成19年度~平成21年度) 発行:財団法人 北海道道路管理技術センター

地盤部会(H15~H16)

3. レーザを用いた地形計測技術に関する調査

近年、地形計測技術としてレーザを用いた方法が実施される場合が増えつつある。これは、従来の航空写真測量と比較して、地表に照射したレーザから直接地形データが得られることやコストの面でも有利とする見解があること、また、データを加工することで3次元的な地形判読が可能とされること、などによると思われる。一方、この技術は高度な専門的技術であり、取得されるデータは検証が難しく、いわばブラックボックスからのデータといえる。

そこで、レーザによる地形計測の精度や実務性を検討することを目的とし、現場において計測を行い、 取得データの有効性や使用に際しての留意点などを整理した。平成15年度に空中レーザ計測(小型航空機からの計測)について、平成16年度に地上型レーザ(地上据え置き型)について検討した。

1 空中レーザ技術の調査

1. 1 空中レーザ計測の概念

空中レーザ計測は、航空機からレーザバルスを 高速でスキャンさせて地表に照射し地表からの 反射時間を距離に変換して 3 次元座標を求める 技術である。

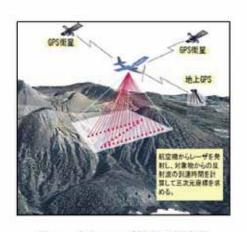


図1 空中レーザ計測の概念図

1. 2 計測対象地域と検討項目

- 1) 国道 230 号定山渓トンネル終点側地域 従来の空測図との違い、微地形判読、植生によ る違いについて検討(図2)
- 国道 452 号三階の滝周辺の地域 積雪深、植生による違いについて検討

1.3 計測結果

図2 国道230号のレーザ計測範囲

1) 既存図面との比較

図3 に森林基本図(1/5,000)との比較を示す。傾斜の違いなど等高線自体に明確な違いが見られる。

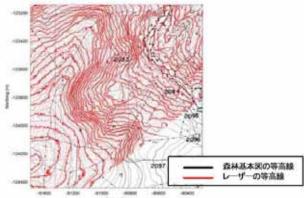


図3 既存図面との比較

通路管理技術委員会 活動テーマ概要:レーザを用いた地形計測技術

2) 実体的な地形判読

データ加工により鳥瞰図が作成でき実体視が 可能となる。(図4)

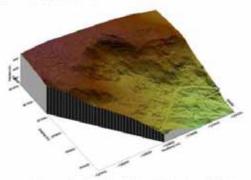


図4 鳥瞰図作成例(図3と同範囲)

2 地上型レーザ技術の調査

2. 1 地上型レーザの概要

地上型レーザは、空中型を小型軽量に改良した もので、計測原理は同じである。(写真1)

写真 1 調査で使用した地上型レーザの概観

2.2 計測対象箇所と検討項目

 国道 230 号定山渓トンネル起点坑口斜面 積雪深、積雪量などの把握(写真2)

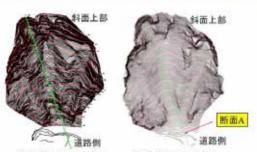


写真2 国道230号の計測対象斜面

 国道 453 号支笏湖畔の斜面 融雪前後の斜面上の土砂移動

2. 3 調査結果

1)積雪量

落葉期(2004/11月) 積雪期(2005/2月) 図 5 得られた立面等高線

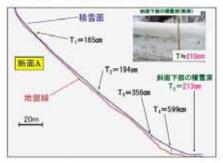


図6 2つの時期の差分で求められた積雪深

2) 土砂移動量

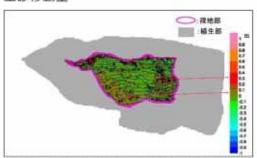


図7 冬期前後の差分で求めた土砂移動量

3 まとめ

- 空中、地上型ともに微地形、3次元地形など 地形判読には有効であり、比較的低コスト。 ただし、オーバーハング地形は工夫が必要。
- 空中レーザは、植生によって正確なデータが 得られない可能性があり、現地検証が必要。
- 地上型は、持ち運びができ実務性が高い。対象までの距離が100m以内程度であれば数cm以内誤差で積雪深が計測でき、また、視認不可な土砂移動も工夫によって監視可能。

■本研究テーマの掲載報告書

道路管理技術委員会活動報告書(その3) (平成16年度~平成18年度) 発行:財団法人 北海道道路管理技術センター

岩盤斜面専門部会(H16~H21)

4. 岩盤斜面評価精度向上のための調査手法の検討

北海道においては平成8年2月に発生した豊浜トンネルの崩落事故以降、第2白糸トンネル、北見市 北陽、えりもなど崩壊量 10,000m³ を超える岩盤崩落が発生している。これらの災害のうち国道の沿線 で発生したものでは、調査委員会が組織され、原因の究明とともに今後に向けた提言が述べられている。 各事故調査委員会で述べられた提言は、いずれも重要なものであるが、それと同時に解決が困難な課題 も多く含まれている。このため「北海道日本海沿岸地域における大規模岩盤崩落検討委員会報告書」に 代表されるように、岩盤斜面の調査や評価精度の向上を目的とした、新たな点検や調査の手法が提案・ 実施されている。

本テーマは上記のような背景の下、積雪寒冷地という北海道特有の気象条件に適した岩盤斜面の調査 手法を検討することを目的としている。

1 専門部会の構成

本テーマは、以下の委員による岩盤斜面専門部 会を構成して検討している。

[岩盤斜面専門部会委員の構成]

部会長 川村 信人

北海道大学理学研究院自然史科学部門 地球惑星システム科学分野

委員 高野 伸栄

北海道大学大学院工学研究科 北方圏環境政策工学専攻

委員 田近 淳

北海道立地質研究所環境地質部

委員 藤井 義明

北海道大学大学院工学研究科 環境循環システム専攻

委員 後藤 芳彦

室蘭工業大学大学院工学研究科 くらし環境系領域

2 モデル地区における検討

岩盤斜面の調査手法を検討するにあたり、一般 国道に面した5箇所のモデル地区を選定してケ ーススタディを実施した。

モデル地区で過去に実施された、着目すべき調 査・検討手法は次のとおりである。

図1 モデル地区位置図

2. 1 3次元地形モデルの活用

レーザープロファイラーや空中写真を利用して3次元地形モデルを構築し、デジタル地形図を 用いた地形解析(図2)や、亀裂等の変状の3次 元的把握(図3)が試みられている。

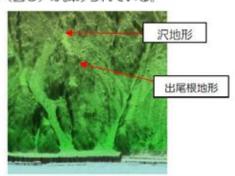


図2 デジタル陰影図による地形解析の例

道路管理技術委員会 活動テーマ模要:岩盤斜面評価精度向上

図3 3次元地形モデルへの亀裂等の表示例

2. 2 クライミング調査

垂直に近い急崖上部の地質性状を把握する方法として、近年専門技術者によるクライミング調査が行われるようになってきた(図4・5)。

図4 クライミング調査の実施状況

クライミング調査により、地質技術者が斜面状況を近接して観察できるとともに、室内試験試料を採取することが可能となってきた。

図5 クライミング調査結果の表示例

3 岩盤斜面調査手法のとりまとめ

ケーススタディの結果等に基づき、岩盤斜面に

関する評価項目と評価手法を、「総合的な岩盤・ 斜面調査手法総括表」としてとりまとめた(表1)。 これに基づき、各モデル地区の調査・検討手法に ついて概観すると次のとおりである。

3. 1 地形に関する評価項目

今回対象としたモデル地区の全てで、デジタル 地形モデルが採用されている。これは、岩盤崩壊 の特性を把握し、理解するうえで3次元的な地形 モデルが有効であることを示している。

3. 2 地質・履歴等に関する評価項目

モデル地区の多くで、可能な限りボーリング調査や地表踏査等の従来から提唱されている調査 手法の適用が試みられている。新たな手法としてはクライミング調査が挙げられる。本手法は斜面 勾配がきつく、通常の踏査により十分な調査が不可能な場合に採用されており、地形条件に合致した調査手法の採用が重要であると考えられる。

履歴に関しては、全ての箇所において過去の被 災履歴が検証されているが、地震の少ない日本海 沿岸地域では地震履歴の検証事例が少ない。

3.3 水理地質に関する評価項目

地表面における湧水状況は、地表踏査・クライミング調査・写真解析等により、全てのモデル地区で実施されている。ボーリング調査に際する水理地質的検討は、岩盤斜面の評価に重要な項目であるが、湧水確認地点が少ないこともあり、一部のモデル地区では実施されていない。

4 今後の予定

今後は、以下に示すような新たな調査手法について、適用方法・注意事項等をまとめたガイドラインを作成する予定である。

- クライミング調査
- 空中写真撮影
- ・ レーザープロファイラー など

■本研究テーマの掲載報告書

道路管理技術委員会活動報告書(その3) (平成16年度~平成18年度) 道路管理技術委員会活動報告書(その4)【未刊】 (平成19年度~平成21年度) 発行:財団法人 北海道道路管理技術センター